\%\#4npel VISIIN EXPERT IAY AUTGMATICDN ZOIE
 Warsaw 2/03/2016

VS Technology /Japan

March 2nd / Automaticon
by Masayuki KANEKO

Network ネットワーク

各国の市場に合わせた営業•販売•在庫•物流・サポートを迅速に対応するコンパクトな組織体系の構築を行っております。
In order to enhance our customer service，we glocalized our sales，marketing，inventory and logistics support to each county． All operations are tailored to the needs of that region．

国内拠点 Domestic Bases

本社：株式会社ウイ・エス・テクノロジー

〒106－0041 東京都港区麻布台1－9－19 TEL：03－3560－6668 FAX：03－3560－6669絑式会社ウイエス・オブティクス
〒336－0027 埼玉県さいたま市南区沼影1－10－1 ラムザタワー4F TEL：048－710－5218 FAX：048－710－5217
株式会社ブライマルセンス
本社： $7601-8414$ 京都府京都市南区西九条蔵王町53 ケンジントンハウス $2 F$ TEL：075－693－6613 FAX：075－662－2118名古屋オフィス：〒451－0045 愛知県名古屋市西区名駅2－23－14 VIA141 3F TEL：052－571－5553 FAX：052－571－5554

式会社ウイエス・ウエストジャバン

 T812－0011 福岡県福岡市博多区博多駅前3－6－12 T812－0011 福岡県福岡市博多区博多駅有TEL：092－43－7113 FAX：
株式会社ユーテクノロジー
丮支店：〒980－0011 宮城県仙台市青葉区上杉1－5－2 ：022－214－2771 FAX：022－214－2773
 TEL：03－6904－3498 FAX：03－6904－3499 TEL：075－632－9410 FAX：075－612－9412

VS Technology Corporatio

Head office
1－9－19 Azabudai，Minato－ku，Tokyo 106－0041，Japan
TEL：＋81－3－3560－6668 FAX：＋81－3－3560－6669
Vs Optics Corporation
Lamza Tower 4F，1－10－1 Numakage，Minami－ku，Saitama 336－0027，Japan
TEL：＋81－48－710－5218 FAX：$+81-48-710-5217$
Primal Sense Co．，Ltd．，
Head Office ： 53 Nishikujo－zaocho，Minami－ku，Kyoto City， TEL：$+81-75-693-6613$ FAX：$+81-75-662-2118$
Nagoya Office ：VIA141 3F，2－23－14，Meieki，
Nishi－ku，Nagoyashi City，Aichi，Japan
TEL：＋81－52－571－5553 FAX：＋81－52－571－5554
VS West Japan Corporation
Fukuoka Office ：3－6－12 Hakata－ekimae，Hakata－ku，Fukuoka City， TEL：＋81－92－433－7153 FAX：＋81－92－433－7135
U－TECHNOLOGY Co．，Ltd．
Tohoku Office ：1－5－21，Kamisugi，Aoba－ku， Tohoku Office ：1－5－21，Kamis
TEL：＋81－22－214－2771 FAX：＋81－22－214－2773
U－TECHNOLOGY Co．，Ltd．：305－2－10－3，Narimasu，
Itabashi－ku，Tokyo 175－0094，Japan
TEL：＋81－3－6904－3498 FAX：＋81－3－6904－3499
Kansai Office ：801－53 Nishikujo－zaocho，Minami－ku，Kyoto City，
TEL：＋81－75－632－9410 FAX：＋81－75－612－9412

海外拠点 Overseas Network

"What is the "best Lens"?

Myths of "Megapixel" resolution

Resolution(Rordzielcrosst) and MTF

Resolution is determined by photographing a chart with lines of various widths, and seeing how far down the lens can still separate and reproduce the lines

Spatial Frequency

Spatial frequcny is a measure of the fineness of a grid. It counts the „number of black-white pairs contained in 1 mm ".

Resolution and MTF

Why a high resolution lens does not necessarily give good image quality?

Because, resolution expresses only the limit value of the lens, and does not tell any about the picture quality.

Contrast

When the lines are widely separated, 100% faithful contrast is reproduced : white is white, and black is black.

* When the lines become so closely spaced, 0\% contrast is reproduced : black and white can not be distinguished. The image is a uniform gray.

How to read the MTF curve

Shortcoming of Resolution

Image Size
Spatial frequency corresponding to 4 MHz
16.5 lines/mm
$1 / 2^{\prime \prime}$
24.0 lines $/ \mathrm{mm}$
33.0 lines $/ \mathrm{mm}$

* NTSC system limits the transmission bandwidth to 4 MHz
* Therefore, 75 lines/mm or 100 lines/mm does not make an important difference!
* What is more import is the reproducibility(=contrast) at 24 lines $/ \mathrm{mm}$, for example on $2 / 3^{\text {c }}$

Between Lens (A) and Lens (B), Which is better?

MTF

If we compare the Spatial frequcny, Lens (B) wins.

* The high skirt of MTF curve means that Lens(B) can resolve high spatial frequency

But, look once again!

MTF

* The transmission band-width of a camera is limited.
(For a 2/3" camera, it is the contrast at 24 lines $/ \mathrm{mm}$ corresponding to 4 MHz)
* Lens (A) has the higher MTF at 24 lines/mm than Lens (B) Lens (A) is better than Lens (B)!
- challenging new stage -

Table for Format / Number of pixels / spatial frequency

CCTV Format (HxV)	$\begin{gathered} 1 \mathrm{MP} \\ \text { Line pair par mm } \end{gathered}$	$\begin{gathered} 1.3 \mathrm{MP} \\ \text { Line pair par mm } \end{gathered}$	$\begin{gathered} 1.5 \mathrm{MP} \\ \text { Line pair par mm } \end{gathered}$	$\begin{gathered} 2 \mathrm{MP} \\ \text { Line pair par mm } \end{gathered}$	$\underset{\substack{\text { Line pair } \\ \text { Lar mm }}}{3 \mathrm{MP}}$	5 MP Line pair par mm	10 MP Line pair par mm
		183	196				
	120	137	147	170	208	269	380
1 1	90	103	110	127	156	200	285
2 1	66			93	114	147	207
	45			64	78	100	143
	25			35	43	56	79
	18			26	31	40	57

"What is the "best Lens"?

Remember the purpose

Between Lens (A) and Lens (B), Which is better?

(A)

Four World Map Projections

Gall Stereographic

Eckert IV

Plate Carree

Created by Fritz Kessler 09/14
Source: ESRI Data 2008

Difference of projection

/ How to project a sphere onto plane

Orthogonal projection

Equidistance projection

Stereographic projection

Equisolid angle projection

Stereographic Projection

\square Used to map spherical panoramas - it preserves angles
\square Areas close to the edge retain their shape, and straight lines are less curved

Equidistance projection

- Used to map the airline distances from the center point - distance is proportional to angle
\square Distances are correct between points along straight lines through the center only. Distortion of areas and shapes increases dramatically to the edge

Notice the shape of the BigBird, A4 paper, and Numbers. One keeps the original

Notice the length and the height difference. One keeps the original length, while another doesn't. angle, while another doesn't.

Lens (A) and Lens (B) are both good Lens. You need to decide how and what you want to see!

Conclusion :-

When you choose the lens

1. Mind Contrast vs Resolution
2. Remember Purposes

For further infor, visit https://www.vst.co.jp

Thank you

